

 CCS336 –Lab Manual 1

LAB
MANUAL

Course: CSC336--- Web Engineering

COMSATS Institute of Information Technology (CIIT)

Islamabad

Department of Computer Science

 Learning Procedure

1) Stage J (Journey inside-out the concept)

2) Stage a1 (Apply the learned)

3) Stage v (Verify the accuracy)

4) Stage a2 (Assess your work)

 CCS336 –Lab Manual 2

 Table of Contents

Lab

Topics Covered Pa
ge

Lab

01

HTML Basics

Lab

02

Working with HTML Links and tables

Lab

03

HTML forms

Lab

04

Css (Cascading Style Sheet) Basics

Lab

05

Designing page lay-out using DIV,s and CSS

Lab

06

Lab Sessional 1

Lab

07

JavaScript Basics

Lab

08

JavaScript Timers

Lab

09

JavaScript Form Validation

Lab

10

PHP Basics

Lab

11

Laravel Setup and Basics

Lab

12

Lab Sessional 2

Lab

13

Laravel Blade Templating

 CCS336 –Lab Manual 3

Lab

14

Laravel CRUD Operations

Lab

15

Laravel Migrations and Eloquent ORM

 Terminal Examination

 CCS336 –Lab Manual 4

Statement Purpose:

To familiarize the students with

 HTML page structure

 Text formatting in HTML

 Lists in HTML

 Add images to web pages

 Use images as links

 Add video and audio files to webpages

Activity Outcomes:

After this lab the students should be able to understand HTML and its basic tags

 Students should be able to design basic web page using HTML Tags

 Student should be able to add text formatting tags

 Student should be able to add lists to web pages

 Student should be able to add images and videos to the web pages

1) Stage J (Journey)

Introduction

HTML

HyperText Markup Language (HTML) is the main markup language for displaying web pages and other

information that can be displayed in a web browser. HTML is written in the form of HTML elements

consisting of tags enclosed in angle brackets (like <html>), within the web page content. HTML tags

most commonly come in pairs like <h1> and </h1>, although some tags, known as empty elements, are

unpaired, for example . The first tag in a pair is the start tag, the second tag is the end tag (they

are also called opening tags and closing tags). In between these tags web designers can add text, tags,

comments and other types of text-based content.

The purpose of a web browser is to read HTML documents and compose them into visible or audible

web pages. The browser does not display the HTML tags, but uses the tags to interpret the content of

the page.

HTML Basic Structure

<html>

<head>

<title> Page Title Goes Here </title>

</head>

LAB # 01

 CCS336 –Lab Manual 5

<body>

content goes here

</body>

</html>

Adding audio,image and video files:
<html>
<head>
<title>adding video</title>
</head>
<body>

<video src=”abc.mp4”>
</body>
</html>

How To Create basic web page
1. Open Notepad
2. Click on File -> Save as…
3. In the File name pull-down box, type in webpage.html
4. Click on Save
5. Type in content for your file
6. Once you finished the content, click on File -> Save

2) Stage a1 (apply)

Lab Activities:

Activity 1:

 Create basic page of COMSATS University as given below

 Add text about COMSATS and apply text formatting

Solution:

<html>
<head>
<title>Home</title>
</head>
<body bgcolor="#98E0F0">
<h1> COMSATS Institute of Information Technology

</h1>
<hr width="100%" color="#030303" size="4" />

<Center><p><h2><pre> Home Department Admissions Academics

 Exams</pre></h2> </p> </center>
<hr width="100%" color="#030303" size="4" />

 CCS336 –Lab Manual 6

<p> <h2> Historic Perspective: </h2> </p>

 click here <!-- Write your comments here -->

<p>WWF's goal is to: <q>Build a future where people live in harmony with

nature.</q></p>

</body>
</html>

Activity 2:

Add list of topics, images and videos to your website

Solution:

<html>

<head>

<title>Home</title>

</head>

<body bgcolor="#98E0F0">

<h1> COMSATS Institute of Information Technology

</h1>

<hr width="100%" color="#030303" size="4" />

<Center><p><h2><pre> Home Department Admissions Academics

 Exams</pre></h2> </p> </center>

<hr width="100%" color="#030303" size="4" />

<ol type="I" start="4">

 computer

 mouse

 keyboard

<dl>

 <dt>Coffee</dt>

 <dd>- black hot drink</dd>

 <dt>Milk</dt>

 CCS336 –Lab Manual 7

 <dd>- white cold drink</dd>

</dl>

<iframe width="420" height="315"

src="https://www.youtube.com/embed/XGSy3_Czz8k?autoplay=1">

</iframe>

</body> </html>

3) Stage v (verify)

Home Activities:

Activity 2:
Learn and try different tags and formatting options on your webpage of

Comsats.

4) Stage a2 (assess)

Assignment:

Create a webpage for Comsats library. Add lists and apply text formatting to

your page. Make videos and take images of the library and then add them to

your page.

 CCS336 –Lab Manual 8

Statement Purpose:

To familiarize the students with

 Internal links

 External links

 In-page references

 use of tables in a web page

Activity Outcomes:

After this lab the students should be able to add linking information and tables in web pages.

1) Stage J (Journey)

Introduction

The crux of HTML is its capability to reference countless other pieces of information easily on the

internet. When you link to another page in your own web site, the link is known as an internal link.

When you link to a different site, it is known as an external link. Similarly, we can link different

section with in a page.

The element <a> is used to link another document. Anything between the opening <a> tag and the

closing tag becomes part of the link that users can click in a browser. To link another page, href

attribute of opening tag of <a> is used. The value of the href attribute is the name of the file you are

linking to.

Internal Link

An internal link can be created as

 Text to click

Example: Click here

External Link

An external link can be created as

 Text to click

Example: Click here

In-page reference:

Can be created in two steps

Step 1: Mark locations

Step 2: link

LAB # 02

 CCS336 –Lab Manual 9

……

4. Example

Internal link:
<html>
<head>
<title> Internal Linking </title>
</head>
<body>
It is the first page. To go to the next page,
please
 click here
</body>
</html>
External link:
<html>
<head>
<title> External Linking </title>
</head>
<body>
This is the home page. To go to the google page, please
 click here
</body>
</html>

HTML TABLES:
HTML tables are defined with the <table> tag. A table is divided into rows (with the <tr> tag), and

each row is divided into data cells (with the <td> tag). td stands for "table data," and holds the content

of a data cell. A <td> tag can contain text, links, images, lists, forms, other tables,etc.

In tables, different attributes can also be used like table border, cell padding, cell spacing etc.

cell spacing is the pixel width between the individual data cells in the TABLE. (The thickness of the

lines making the TABLE grid). The default is zero. If the BORDER is set at 0, the cell spacing lines

will be invisible. Cell padding is the pixel space between the cell contents and the cell border.

4. Examples

Simple Table:

<table border="1">

<tr>

<td>row 1, cell 1</td>

<td>row 1, cell 2</td>

</tr>

<tr>

<td>row 2, cell 1</td>

<td>row 2, cell 2</td>

</tr>

</table>

Table Border:

<table border="1">

<tr>

<td>Row 1, cell 1</td>

 CCS336 –Lab Manual 10

<td>Row 1, cell 2</td>

</tr>

</table>

Cell spacing

<table border="1" cellspacing="5">

<tr>

<td>some text</td>

<td>some text</td>

</tr><tr>

<td>some text</td>

<td>some text</td>

</tr>

</table>

Cell Padding

<table border="1" cellpadding="10">

<tr>

<td>some text</td>

<td>some text</td>

</tr><tr>

<td>some text</td>

<td>some text</td>

</tr>

</table>

2) Stage a1 (apply)

Lab Activities:

Activity 1:

Use the page you created in the first lab and add the following linking information

 Create links to home, departments, admission and exams pages of CIIT Islamabad campus

Solution:

<html>
<head>
<title>Home</title>
</head>
<body bgcolor="#98E0F0">
<h1> COMSATS Institute of Information Technology

</h1>
<hr width="100%" color="#030303" size="4" />

 click here
 click here

 CCS336 –Lab Manual 11

 click here
 click here

<Center><p><h2><pre> Home Department Admissions Academics

 Exams</pre></h2> </p> </center>
<hr width="100%" color="#030303" size="4" />

<p> <h2> Historic Perspective: </h2> </p>

 click here <!-- Write your comments here -->

<p>WWF's goal is to: <q>Build a future where people live in harmony with

nature.</q></p>

</body>
</html>

3) Stage v (verify)

Home Activities:

Activity 2:

 Create in-page reference to the list created in the body and marks the locations accordingly

 Add tables to department and admission pages.

4) Stage a2 (assess)

Use tables to create make a page layout as given below

 CCS336 –Lab Manual 12

Statement Purpose:

To familiarize the students with the HTML forms and different input tags.

Activity Outcomes:

After this lab the students should be able to understand HTML input tags

1) Stage J (Journey)

Introduction

HTML forms are used to pass data to a server. A form can contain input elements like text fields,

checkboxes, radio-buttons, submit buttons and more. A form can also contain select lists, textarea,

fieldset, legend, and label elements. The <form> tag is used to create an HTML form.

<form>

input elements

</form>

The <form> tag

The <form arguments> ... </form> tag encloses form elements (and probably other elements as

well).The arguments to form tell what to do with the user input

action="url" (required)

Specifies where to send the data when the Submit button is clicked

method="get" (default)

Form data is sent as a URL with ?form_data info appended to the end

method="post"

Form data is sent in the body of the URL request

target="target" . Target tells where to open the page sent as a result of the request.

Input Tags

There are many input tags in the forms.

 Text input

A text field:

 <input type="text" name="textfield" value="with an initial value" />

A multi-line text field

 <textarea name="textarea" cols="24" rows="2">Hello</textarea>

LAB # 03

 CCS336 –Lab Manual 13

A password field:

 <input type="password" name="textfield3" value="secret" />

Buttons

 A submit button:

 <input type="submit" name="Submit" value="Submit" />

A reset button:

 <input type="reset" name="Submit2" value="Reset" />

A plain button:

 <input type="button" name="Submit3" value="Push Me" />

Radio Buttons

Radio buttons:

<input type="radio" name="radiobutton" value="myValue1" /> male

<input type="radio" name="radiobutton" value="myValue2” checked="checked" />female

Checkboxes

<input type="checkbox" name="checkbox" value="checkbox" checked="checked">

Drop-down menu

<select name="select">

 <option value="red">red</option>

 <option value="green">green</option>

 <option value="BLUE">blue</option>

</select>

HTML 5 forms elements:

HTML5 is the current version of THML and still under development. HTML5 enhances HTML form

not only by providing new attributes to existing elements and but also provide new elements which

can be added to the HTML forms.

HTML5 attributes for existing elements

Required: make an input field must to fill

Pattern: used to validate user’s input

Readonly: makes an element read-only

Disabled: is used to make an input field disabled

Autocomplete: adds autocomplete functionality to input fields

HTML5 new form elements:

Datalist: an input field with predefined autocomplete options

My favorite color: <input type=”text” list=”color”>

<datalist id=”color”>

 CCS336 –Lab Manual 14

<option>red</option>

<option>black</option>

</datalist>

Email input field: checks user’s input for valid email address

<input type=”email” name=”email”>

Date input field: shows a calendar to choose a data

<input type=”date” name=”dob”>

Color input field: displays color window to choose a color

<input type=”color” name=”favcolor”>

Number input field: makes an input field to accept only numeric values

<input type=”number”>

2)Stage a1 (apply)

Lab Activities:

Activity 1:

 Make a form with name, gender (use radio buttons) ,password and submit form option.Use

text box for input fields and buttons for submit option.

Solution:

<html>

<head>

<title>Get Identity</title>

<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">

</head>

<body>

<p>Who are you?</p>

<form method="post" action="">

 <p>Name:

 <input type="text" name="name">

 </p>

<p>Password:

 <input type="password" name="password">

 </p>

 <p>Gender:

 <label><input type="radio" name="gender" value="m" />Male<label>

 <label><input type="radio" name="gender" value="f" />Female</label>

 </p>

<p>:

 <input type="submit" name="submit" value="Login" />

 CCS336 –Lab Manual 15

 <input type="reset" name="reset" value="Cancel" />

 </p>

 </form>

</body>

</html>

3)Stage v (verify)

Home Activities:

Activity 2:
Write the HTML code for JOB application form of CIIT (find the complete job application form from

CIIT web site)

4)Stage a2 (assess)

Assignment 1:

Design the web template given below using Tables and forms concept in HTML.

 Moreover add colors to the fields and tables as mentioned below.

 Add links to forgot password, signup, login here like key words

 CCS336 –Lab Manual 16

Assignment 2:

Design the web template given below using Tables and forms concept in HTML.

Moreover add colors to the fields and tables as mentioned below.Add links to connect face

book, twitter, and terms & conditions

 CCS336 –Lab Manual 17

Grey

Black

White

fields

Green

button

Light

blue Dark Blue

 CCS336 –Lab Manual 18

Statement Purpose:

To familiarize the students with the CSS.

Activity Outcomes:

After this lab the students should be able to apply CSS to the web pages.

1)Stage J (Journey)

Introduction

CSS(Cascading Style Sheet)

CSS stands for Cascading Style Sheets. It is a way to style HTML webpages. A style sheet is the

presentation of an HTML document. CSS is a style language that defines layout of HTML documents.

For example, CSS covers fonts, colours, margins, lines, height, width, background images, advanced

positions and many other things. CSS can be written either inside the html tags (i.e. Inline), in the

<head></head> section of an HTML document (i.e. Internal) or in a separate CSS File (i.e. External).

 CSS Basic Structure

For inline styling CSS is written inside the style attribute of a tag. For example,

<tag style=”property:value”></tag>

For Internal styling, CSS is written into the head section of the HTML document. For example,

<style>

.class

{

property:value;

}

</style>

For external styling, CSS is written as a separate file and the file is saved with an extension .css. In

external style sheets the style tags are not necessary. Whereas, external CSS follow the same structure

as the Internal CSS does.

 Basic CSS Properties

Font Properties

 Font Family

 Font Style

 Font Variant

 Font Weight

LAB # 04

 CCS336 –Lab Manual 19

 Font Size

 Font

Color and Background Properties

 Color

 Background Color

 Background Image

 Background Repeat

 Background Position

Text Properties

 Word Spacing

 Letter Spacing

 Text Decoration

 Vertical Alignment

 Line Height

Box Properties

 Margin

 Padding

 Border Width

 Border Color

 Border Style

 Width

 Height

 Float

4. Examples

Inline CSS:

<table style=”width:200px; background-color: #000000;”> Table element with Inline Style</table>

Internal CSS:

<html>
<head>

 CCS336 –Lab Manual 20

<title>Internal CSS</title>
<style>
h1{color:#FF0000;
font-family:Calibri;
font-size:36px
}
</style>
</head>
<body>
<h1>This heading is styled with CSS</h1>
</body>
</html>
External CSS:

CSS file: (mystyle.css)

h1{color:green;

 font-size:36px;

 font-family:calibri

 }

2)Stage a1 (apply)

Lab Activities:

Activity 1:

Use the html page created in Lab 2 (page for COMSATS) and create an external style-sheet which

style the elements of the page including style for

 apply font and text properties

 control the background color with CSS

 style different states of inks

 paragraphs and headings

Solution:

body {

 background-color: lightblue;

}

h1 {

 color: navy;

 margin-left: 20px;

font-family: verdana;

 CCS336 –Lab Manual 21

 font-size: 50px;

}

#para1 {

 text-align: center;

 color: red;

}

.center {

 text-align: center;

 color: yellow; }

 3)Stage v (verify)

Home Activities:

Activity 2:
Design the web template given below using tables and external CSS

 CCS336 –Lab Manual 22

4)Stage a2 (assess)

Assignment:

Design the web template given below using tables and external CSS

 CCS336 –Lab Manual 23

Statement Purpose:

To familiarize the students with the use of Div’s and the use of CSS for designing page layout

Activity Outcomes:

After this lab the students should be able to use the DIV tag and the use of CSS for page layout

designing

1)Stage J (Journey)

Introduction

The div tag is used to define a division or section in an HTML document. It visually, allows us to

make containers that can be formatted. It can be declared as: <div>……</div>. We use div and CSS

to design a page layout. The div tag is used to represent sections in a page and CSS is used to style

these sections. We can describe the process of designing a page as

• Determine the requirements of the site

• Group the required information

• Make a site map

• Identify key elements for each page

• Decide about the arrangement of information on each page

• Translate the design into code

2)Stage a1 (apply)

Lab Activities:

Activity 1:

Use div and CSS properties to design a page layout which contains

 a header section to display the title, style this title with CSS

 a form container which contains a registration form, use CSS to style the elements of the form

 a footer section

LAB # 05

 CCS336 –Lab Manual 24

Solution:

External CSS

body {

 background-color: lightblue;

}

h1 {

 color: navy;

 margin-left: 20px;

font-family: verdana;

 font-size: 50px;

}

#para1 {

 text-align: center;

 color: red;

}

.center {

 text-align: center;

 color: yellow;

 }

<html>
<head>
<title>Using divs</title>
</head>
<body>

 CCS336 –Lab Manual 25

<div>
<div style="width:100px;backround-color:gray">First</div>
<div style="width:100px;backround-color:red">second</div>
</div>
</body>
</html>

3) Stage v (verify)

Home Activities:

Activity 2:
Design the web template given below using tables and external CSS

4)Stage a2 (assess)

Assignment:

Design the web page for Comsats Alumni using External CSS.

 CCS336 –Lab Manual 26

Statement Purpose:

To familiarize the students with Java Script.

Activity Outcomes:

After this lab the students should be able to understand Java Script basics and to validate the

form using Java Script.

1) Stage J (Journey)

Introduction

JavaScript is used in millions of Web pages to improve the design, validate forms, detect

browsers, create cookies, and much more. JavaScript is the most popular scripting language

on the internet, and works in all major browsers, such as Internet Explorer, Mozilla, Firefox,

Netscape, Opera.

How to Put a JavaScript Into an HTML Page?

JavaScript can be embedded into HTML two ways

İnter script: <script>, </script> tags are used to start and end a javascript block

External script: JavaScript is written in a seprate file and included in the HTML file using src

attribute of the <script>. Example

<script src="myscripts.js"> </script>

Variables in JavaScript:

JavaScript provides numbers, string, boolean, and null variable types. JavaScript is a loosly

typed language. var keyword is used to declare a variable. We can declare a variable in

JavaScript as

var name=’Asad’;

Operats in JavaScript:

 Assignment Operator: =

 Arithmetic Operators: +, - , *, /, %, ++, --

 Logical Operators: &&, ||, !

 Comparison Operators: ==, ===, !=, !==, <, >, <=, >=

Input/output in JavaScript:

 write(); is used to write on browser

o document.write(“hello world”)

o document.write(a)

 prompt(); is used to take input from users

o var num = prompt(“Please Enter a Number”, 0)

 alert(): used to show an alert box

LAB # 6

 CCS336 –Lab Manual 27

Defining a function :

function functionName([parameters])

{

[statements]

}

Conditional statements:

If statement

if (condition)

 statement

or

if(condition)

 { statements }

If-else statement

if(condition)

 {statement}

 else

 {statements}

Loops in JavaScript:

For loop

for(var i=1; i==10; i==)

{

Document.write(“hello world”)

}

While loop

While(condition)

{

}

Do-while loop

do

{

}

while(condition)

 CCS336 –Lab Manual 28

2) Stage a1 (apply)

Lab Activities:

Activity 1:

Input/output and variables:

<html>

<head>

<title>Untitled Document</title>

</head>

<body>

<script language="javascript">

var num=prompt("Pleae Enter a Number",0)

document.write("You Entered ",num)

</script>

</body>

</html>

Functions:

<html>

<head>

<title>Untitled Document</title>

<script language="javascript">

function getName()

{

var name=prompt("Pleae enter your name",'name')

document.write("Welcome Mr. ",name)

}

</script>

</head>

<body onload="getName()">

</body>

Conditional statement:

<html>

<head>

 CCS336 –Lab Manual 29

<title>Using If condition</title>

<script language="javascript">

function playGame()

{

var res=Math.round(Math.random()*10)

var num=prompt("Pleae a number",0)

if(num==res)

document.write("You Won")

else

document.write("Your loss, correct Answer is"

,res)

}

</script>

</head>

<body>

<p onClick="playGame()">Play the Game</p>

</body>

</html>

3) Stage v (verify)

Home Activities:

Activity:

 Write the javascript code which asks the users to enter a number or zero to end taking

the input. When user enters a 0 the program displays the sum.

 Write a javascript function which displays a question in prompt box and gets its

answer. If the answer is correct then shows a success message otherwise displays a

error message

 Write javascript code which asks users to enter a number, a message and displays that

message for the number of times as entered by the user

4) Stage a2 (assess)

Assignment:

Use the contents of this lab in your project and present it before terminal exam

 CCS336 –Lab Manual 30

Statement Purpose:

To familiarize students with the concepts of JavaScript Animation using JavaScript Timers.

Activity Outcomes:

After this lab, the students should be able to understand the purpose and use of JavaScript

Timers. Furthermore, they have to write timer functions in html for creating Website Carousel.

1) Stage J (Journey)

Introduction

A timer is a function that enables us to execute a function at a particular time.

Using timers, you can delay the execution of code so that it does not get done at the exact

moment an event is triggered or the page is loaded. For example, you can use timers to change

the advertisement banners on your website at regular intervals, or display a real-time clock,

etc. There are two timer functions in JavaScript: setTimeout() and setInterval().

setTimeout()

The setTimeout() method calls a function or evaluates an expression after a specified number

of milliseconds. The function is only executed once. If you need to repeat execution, use

the setInterval() method. We use the clearTimeout() method to prevent the function from

running.

Syntax: setTimeout(function, delay (in milliseconds))

This function accepts two parameters: a function, which is the function to execute, and an

optional delay parameter, which is the number of milliseconds representing the amount of

time to wait before executing the function (1 second = 1000 milliseconds).

clearTimeout()

The clearTimeout()method clears a timer set with the setTimeout() method. The ID value

returned by setTimeout()is used as the parameter for the clearTimeout() method.

id_of_settimeout = setTimeout("javascript function", milliseconds);

If the function has not already been executed, you will be able to stop the execution by

calling the clearTimeout() method.

Syntax: clearTimeout(id_of_settimeout)

setInterval()

The setInterval() function executes a function or specified piece of code repeatedly at fixed

time intervals. The setInterval() method will continue calling the function until the

LAB # 7

https://www.w3schools.com/jsref/met_win_setinterval.asp
https://www.w3schools.com/jsref/met_win_setinterval.asp
https://www.w3schools.com/jsref/met_win_cleartimeout.asp
https://www.w3schools.com/jsref/met_win_cleartimeout.asp

 CCS336 –Lab Manual 31

clearInterval() is called, or the window is closed. The ID value returned by setInterval() is

used as the parameter for the clearInterval() method.

Syntax: setInterval(function, intervals(in milliseconds)).

This function also accepts two parameters: a function, which is the function to execute,

and interval, which is the number of milliseconds representing the amount of time to wait

before executing the function (1 second = 1000 milliseconds).

clearInterval()

The clearInterval() method clears a timer set with the setInterval () method. The ID value

returned by setInterval() is used as the parameter for the clearInterval() method.

id_of_setinterval = setInterval("javascript function", milliseconds);

Then you will be able to stop the execution by calling the clearInterval() method.

clearInterval(id_of_setinterval);

1) Stage a1 (apply)

Lab Activities:

Activity 1:

In first activity of this lab, we will learn how to use setTimeOut() method to display a text message

after a delay of 3sec.

Solution:

Activity 2:

In second activity of this lab, we will learn how to use clearTimeOut() method to stop the execution

of a function before it is activated.

https://www.w3schools.com/jsref/met_win_clearinterval.asp
https://www.w3schools.com/jsref/met_win_clearinterval.asp

 CCS336 –Lab Manual 32

Solution:

Activity 3:

In third activity of this lab, we will learn how to use setInterval() method for creating a clock which

displays current time by updating it against each second.

Solution:

Activity 4:

In forth activity of this lab, we will learn how to use clearInterval() method for stop the clock at any

particular moment within its updating.

 CCS336 –Lab Manual 33

Solution:

1) Stage v (verify)

Home Activities:

Activity 1:

Create a Website Carousel using JavaScript for a responsive animal history web page with its

layout for different screen sizes as provided below. Following are the supplementary details

about different sections of the page:

1- The task should use bootstrap classes to create layout for Animal History banner,

Image Slider and Animal description sections of the web page. Students can only use

bootstrap.min.css as a third-party CSS library.

2- Students are supposed to write a JavaScript code for imageSlider with Play and Pause

buttons. Slider should stop when Pause button is pressed and start when Play button is

clicked.

3- It is pertinent to note that in descriptive sections of different animals, location of

image and description changes with different screen sizes.

1. Extra-small, Small Screen

 CCS336 –Lab Manual 34

2. Medium Screen

3. Large Screen

 CCS336 –Lab Manual 35

2) Stage a2 (assess)

Assignment:

Create a HTML5 progress bar using JavaScript Timers which is used to indicate how much

of a task has been completed, such as loading something on a page or registration process. It

is typically displayed as a progress bar and often marked as a percentage from 0 to 100%.

 CCS336 –Lab Manual 36

Statement Purpose:

This lab will introduce you to regular expressions (REGEX) and its practical implementation by

demonstrating the use of regular expressions in different views.

Activity Outcomes:

This lab teaches you the following topics:

 Purpose and use of different regular expressions

 To write functions in html, validate using regular expressions

 Use of REGEX for validating different inputs (email, password etc).

 Use of REGEX for checking certain words in a string/comment.

Instructor Note:

As pre-lab activity, read documentation of REGEX in Javascript and PHP implement a demo

example for email structure input that you are going to demonstrate in the lab and also follow

the reading/instruction given by your theory instructor.

2) Stage J (Journey)

Introduction

A regular expression is an object that describes a pattern of characters. Regular expressions

are nothing more than a sequence or pattern of characters itself. They provide the foundation

for pattern-matching functionality. They are used to perform pattern-matching and "search-

and-replace" functions on text.

Following link is helpful in creating regular expressions of your requirements.

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

3) Stage a1 (apply)

Lab Activities:

Activity 1:

Develop and demonstrate, using Javascript script, HTML document that collects the user

input (the valid format is: A digit from 1 to 4 followed by two upper-case characters followed

by two digits followed by two upper-case characters followed by three digits; no embedded

spaces allowed) of the user. Event handler must be included for the form element that collects

this information to validate the input. Messages in the alert windows must be produced when

errors are detected.

Solution:

LAB # 8

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Guide/Regular_Expressions

 CCS336 –Lab Manual 37

Activity 2:

Using REGEX to perform character recognition in a string. Also use global(g) case sensitive(i)

and multiline(m) search.

Solution:

Activity 3:

Validate email field while creating a signup form. Also show the error messages if email is not

valid. Use event handler for input field to validate email.

Solution:

 CCS336 –Lab Manual 38

4) Stage v (verify)

Home Activities:

Activity: Validate password field while creating signup form. Ask the user to set a strong

password by using at least 1 uppercase letter, 1 lowercase letter, 1 digit and 1 ASCII character

show the error messages if password doesn’t contain any of these expressions.

5) Stage a2 (assess)

Assignment:
Use REGEX in your projects as it enables you to Get useful and structure set of data. This will

be assessed in your semester projects.

 CCS336 –Lab Manual 39

Statement Purpose:

This lab will give you introduction and practical implementation of different types of API

(Application Programming Interface) and will guide you to perform actions against the data

extracted from API.

Activity Outcomes:

This lab teaches you the following topics:

 Implement simple URL and API by looking at the difference between two.

 Two ways of calling an API (function and key).

 Describe Events and Controls of API

Describe the arguments used to perform actions on data in different functions and

Events.

Instructor Note:

As pre-lab activity, read documentation of API you are going to implement in the lab and also

as given by your theory instructor.

1) Stage J (Journey)

Introduction

An API, or Application Programming Interface, is a set of functions that one computer program

makes available to other programs (or developers) so they can talk to it directly without having

to give it access to the source code. The most popular APIs are from operating systems like

Windows XP or Mac OS X. They allow third-party developers to write programs on top of

Microsoft’s and Apple’s software.

If we type in a URL to a web site and that URL returns data in a structured format, then a basic

API is already in place. To take this to the next level, you’ll also want to allow developers to

perform actions against the data. If there’s no need to authenticate your users/developers with

an API key, a GET request very well might be your method of choice and we can have the

users query everything using just the URL alone. For example, selecting entry 3 from a public

record could be as easy as typing in the URL: http://site.com/api/select/3.

However, when a lot of parameters need to be set (which would make the URL extremely

long), or when security is of greater concern, a POST request is a safer and more common

approach to asking data from a server. A POST request will usually require some sort of data

to go along with the URL parameters so the server can check to make sure the user/developer

has permission to do the type of request they’re attempting.

2) Stage a1 (apply)

Lab Activities:

Using Google Map API

Activity 1:

LAB # 9

 CCS336 –Lab Manual 40

Creating your own key using your google account.

Solution:

Step1:

You need to create a project for which you are creating your API key. After creating the project,

you will be directed towards the following window which will allow you to enable google API.

Step 2:

Click on Enable API the following window will appear. This will allow you to choose API of

your requirement.

Step 3:

In this lab we are using API for javascript so I will use Google Maps Javascript API. After you

enable the API. Go to Credentials tab in the left panel of above window. That will have your

Google Map API key for Javascript.

Activity 2:

Write code to use Google Map API

 CCS336 –Lab Manual 41

Solution:

Activity 3:

Use of Events in Google Map API(Markers)

Solution:

Activity 4:

Use of polygon function in Google Map API(Markers)

Solution:

 CCS336 –Lab Manual 42

3) Stage v (verify)

Home Activities:

The best way to learn about APIs is to use them. After you’ve gone through the process once,

the concepts become a lot easier to understand.

Activity: Use different events from Google Map API documentation and implement those

events and controls to get a control on this API

4) Stage a2 (assess)

 CCS336 –Lab Manual 43

Statement Purpose:

To familiarize students with the basic programming constructs in PHP

Activity Outcomes:

After this lab the students should be able to use PHP constructs to solve basic programming problems

1) Stage J (Journey)

Introduction

PHP is a powerful server side scripting language. It is used to create dynamic web pages. It is mainly

used to manage database at server. PHP can be embedded with HTML in three ways

• We can add blocks of PHP code in HTML

• We can use HTML instructions in PHP

• We can write standalone PHP script

Following are some of the basic rules for writing PHP code

• Blocks of PHP code can be added in HTML code with opening and closing tags, as follows:

<?php and ?>. Similarly, we can use simply <? or ?> or <script language=“PHP”>……

</script> to add PHP blocks in HTML

• PHP statements end with a semicolon

• Comments can be added as: // for one line comment and /* and */ for multiple lines comment

PHP provides several instructions to write output on the browser screen. Most commonly we use echo

to write output on the browser screen. The syntax of the echo is

echo (“Welcome to PHP”);

We can also use echo command as

echo “Welcome to PHP”;

print command can also be used to write out put on the browser. The syntax of writing print command

is

print(“Welcome to PHP”); or print “Welcome to PHP”;

echo is marginally faster as compared to print as echo does not return any value. printf function can

also be used to output a formatted string.

We can also write HTML instructions in PHP. The echo statement outputs whatever it’s told to the

browser. It can output not only plain text but also HTML tags. We have to write HTML tags in quotation

marks. In PHP single and double quotation marks are used interchangeably but their logical sequence

is must to maintain.

A constant is a placeholder for a value that you reference within your code that is formally defined

before using it. The name of a constant in PHP begins with a letter or an underscore. Names of constants

are case sensitive. Typically they are named using all capital letters. PHP function define() is used to

assign a value to a constant.

In PHP, variable names begin with $ sign. First character must be a letter or underscore while remaining

characters may be letters, numbers or underscores. Variable names are case sensitive. We don’t need to

declare or initialize variables. PHP is a loosely typed language it means that data types does not require

to be declare explicitly.

LAB # 10

 CCS336 –Lab Manual 44

An operator is a symbol used to perform a specific operation on variables or operands. PHP provides

several types of operators to represent different operations. Following are the operators available in

PHP

Arithmetic operators: + (addition), - (subtraction), / (division), * (multiplication) and % (remainder)

Assignment operator: = (assignment), += (Operator adds and assigns a value. For example $a += $b,

here += adds the value of $b in $a and then assigns the result to $a. -=, *= and/= operators can also be

used), .= operator concatenates and assign the value. For example $.=$b, here .= concatenates the value

of $b with $a and then assigns this value to $a)

String operators: . (Concatenate two strings), .= (concatenates; and assign the value).

Increment and decrement operators: ++ (increment), -- (decrement). These operators can be used

either in prefix or postfix form.

Logical operators: AND or && (logical and), OR or || (logical or), Not or! (logical not) and XOR

(logical exclusive-or).

Comparison operators: = = (equality), = = = (checks both types and values of variables), !=

(inequality), > (greater), < (less), >= (greater or equal) and <= (less or equal).

Conditional statements: Conditional statements make it possible for your computer program to

respond accordingly to a wide variety of inputs, using logic to discern between various conditions based

on input value. In PHP following conditional statements are available.

If statement: if statements allow code to be executed when the condition specified is met; if the

condition is true then the code in the curly braces is executed. Here is the syntax for an if statement:

if (condition)

 { statement }

if….else statement: When you have two possible situations and you want to react differently for each,

you can use an if...else statement. This means: “If the conditions specified are met, run the first block

of code; otherwise run the second block.” The syntax is as follows:

if (condition)

{

code to be executed if condition is true

}

else

{

code to be executed if condition is false

}

 Switch statement: You can think of the switch statement as a variant of the if-else combination, often

used when you need to compare a variable against a limited number of values called cases in switch

statement terminology. The syntax of the switch statement in PHP is

switch(variable)
{
case option:
action
break;
.
.
}

Looping statements in PHP: Looping statements are used to execute the same block of code a

specified number of times. Following are the basic loops in PHP.

 CCS336 –Lab Manual 45

A while loop runs the same block of code while or until a condition is true. Syntax of for loop is given

below

while loop:

while(condition)
{
Statements
Increment/decrement
}
A do while loop runs once before the condition is checked. If the condition is true, it will continue to

run until the condition is false. (The difference between a do and a do while loop is that do while runs

once whether or not the condition is met.).

do
{
Statements
Increment/decrement
}
while(condition)

A for loop runs the same block of code a specified number of times (for example, five times).

for (init counter; test counter; increment counter) {
 code to be executed;
}
A foreach loop is used to read an array.

foreach (array_expression as $value)
 { statement}

Arrays in PHP: An array is traditionally defined as a group of items that share certain characteristics.

Each item consists of two components; the key and a value. Key is the index of the item in the array

and value is the value of the item. PHP doesn’t require that you assign a size or type to an array at

creation time.

Declaring an array: PHP doesn’t even require that you declare the array before using it,

although you’re free to do so. We just add items to the array. We can add an item to a list as

$array-name[index of the element]= value;

For example we can start and add an item in an array as given below

$players[0] = ‘Muhammad Yousuf’;

We can add more items in the similar way but use a different index

$players[1]=”Ricky Ponting”;

Accessing an array: we can read an array item just by entering the array name and the index of the

item. For example if we want to read and display the value of second item in the $players array we can

do this as given below

echo $players[1];

 CCS336 –Lab Manual 46

Associative array: PHP allow us to create arrays where items are declared by name instead of index

or key number. Such an array is called an associative array. An item in an associative array can be added

as

$array-name[item name] = value

For example

$players[‘yousuf’]=”Muhammad Yousuf”;

Items in associate array are accessed by name. For example, we can read the value of the above array

as

echo $players[‘yousuf’];

array() function: we can also use array function to create an array. By using this function we can add

multiple items in one line. The syntax of the array function is

$array_name=array(item_1,item_2,…item_n);

Example is $players=array(“M.Yoursuf”,”Imran Khan”);

We can also use array function to create associative arrays such as

$players=array(“Yousuf”=>“M.Yoursuf”,”imran”=>”Imran Khan”);

Sorting an array: PHP provides us sort() to sort an array in ascending order while rsort() function to

sort an array in descending order.

A function is a block of statements that can be used repeatedly in a program. In PHP, a function can
be defined as;
function functionName(list of arguments) {
 code to be executed;
}
To call the function, just write its name along with the required arguments.

2) Stage a1 (apply)

Activity 1:

Write the PHP code that creates a table as given below

Subject Total Marks Obtained Marks

Web Engineering 100 80

Database Systems 100 90

Solution:

<?php
echo "<table border=1 >
<tr> <th>Subject</th> <th>Total Marks</th><th>Obtained Marks</td></tr>
<tr> <td>Web Engineering</td> <td>100</td><td>80</td></tr>
<tr> <td>Database Systems</td> <td>100</td> <td>90</td></tr>
</table>";
?>

Out-put:

 CCS336 –Lab Manual 47

Activity 2:

Write a PHP script to calculate and display the sum, average, and five lowest and highest numbers

from the given list.

123, 160, 62, 153, 345, 128, 387, 825, 666, 614, 723, 163, 811, 176, 732, 628, 722, 733, 755, 765,

794, 613, 627

Solution:
<?php
$nums = "123, 160, 62, 153, 345, 128, 387, 825, 666, 614, 723, 163, 811, 176, 732,628, 722, 733, 755, 765, 794, 613,
627";
$nums_array = explode(',', $nums);
$tot_num = 0;
$nums_array_length = count($nums_array);
foreach($nums_array as $num)
{
 $tot_num += $num;
}
echo "Sum of Number is : ".$tot_num."

";
$avg_num = $tot_num/$nums_array_length;
 echo "Average Number is : ".$avg_num."

";
sort($nums_array);
echo "
 List of Five Lowest Numbers :
";
for ($i=0; $i< 5; $i++)
{
echo $nums_array[$i].", ";
}
echo "

List of Five Highest Numbers :
";
for ($i=($nums_array_length-5); $i< ($nums_array_length); $i++)
{
echo $nums_array[$i].", ";
}
?>

Out-put:

 CCS336 –Lab Manual 48

Activity 3:
Write a PHP script to create the following table (using looping statement).

1+1=2 1+2=3 1+3=4 1+4=5 1+5=6

2+1=3 2+2=4 2+3=5 2+4=6 2+5=7

3+1=4 3+2=5 3+3=6 3+4=7 3+5=8

4+1=5 4+2=6 4+3=7 4+4=8 4+5=9

5+1=6 5+2=7 5+3=8 5+4=9 5+5=10

6+1=7 6+2=8 6+3=9 6+4=10 6+5=11

7+1=8 7+2=9 7+3=10 7+4=11 7+5=12

8+1=9 8+2=10 8+3=11 8+4=12 8+5=13

9+1=10 9+2=11 9+3=12 9+4=13 9+5=14

10+1=11 10+2=12 10+3=13 10+4=14 10+5=15

Solution:

<!DOCTYPE html>
<html>
<head>
<title> LOOP Example</title>
</head>
<body>
<table border="1">
<?php
for($row=1;$row<=10;$row++)
{
echo "<tr>";
for ($col=1;$col<=5;$col++)
 {
 $sum=$row+$col;
 echo "<td>".$row. "+". $col ."=".$sum."</td>";
 }
 echo "</tr>";
 }
?>
</table>
</body>
</html>

Out-put:

 CCS336 –Lab Manual 49

Activity 4:
Write a PHP function that gets a number as an argument and calculates and displays its factorial.

Solution:
<?php
function findFact($n)
{
if($n<0)
echo "Please enter a positive number";

 elseif($n ==0)
 {
 return 1;
 }
 else
 {
 return $n * findFact($n-1);
 }
 }
 $num=6;
echo "Factorial of $num is: ".$factorial=findFact($num);
?>

Out-put:

3) Stage v (verify)

Home Activities:
1. Write a PHP program that finds the sum of all prime number from an array

 CCS336 –Lab Manual 50

2. Write a nested for loop in the PHHP that prints the following output:

 1

 1 2 1

 1 2 4 2 1

 1 2 4 8 4 2 1

 1 2 4 8 16 8 4 2 1

 1 2 4 8 16 32 16 8 4 2 1

 1 2 4 8 16 32 64 32 16 8 4 2 1

1 2 4 8 16 32 64 128 64 32 16 8 4 2 1

 CCS336 –Lab Manual 51

Statement Purpose:

To familiarize the students with the use of Laravel Framework.

Activity Outcomes:

After this lab, the students should be able to setup an environment for Laravel Framework and create

a basic application using the Framework.

1) Stage J (Journey)

Introduction

Laravel is a free, open-source PHP web framework, created by Taylor Otwell and intended for

the development of web applications following the model view controller (MVC) architectural

pattern and based on Symfony. Some of the features of Laravel are a modular packaging

system with a dedicated dependency manager, different ways for accessing relational

databases, utilities that aid in application deployment and maintenance, and its orientation

toward syntactic sugar.

Laravel 1, 2, and 3

The first beta of Laravel 1 was released in June 2011, and it consisted of entirely custom code.

It featured a custom ORM (Eloquent), Closure routing (inspired by Ruby Sinatra), a module

system for extension, and helpers for forms, validation, authentication, and more. Early Laravel

development moved quickly, and Laravel 2 and 3 were released in November 2011 and

February 2012 respectively. They introduced controllers, unit testing, a CLI tool, an IOC

container, Eloquent relationships, and migrations.

Laravel 4

With Laravel 4, Taylor rewrote the entire framework from the ground up. By this point

Composer was showing signs of becoming an industry standard and Taylor saw the value of

rewriting the framework as a collection of components, distributed and bunded together with

Composer. Taylor developed a set of components under the code-name Illuminate and, in May

of 2013, released Laravel 4 as a fresh look at Laravel, based on pulling in Symfony and

Illuminate packages in via Composer.

Laravel 4 also introduced queues, a mail component, Façades, and database seeding. And

because Laravel was now relying on Symfony components, it was announced that Laravel

would be mirroring (not exactly, but soon-after) the release-every-6-months release schedule

Symfony follows.

Laravel 5

LAB # 11

https://en.wikipedia.org/wiki/Free_software
https://en.wikipedia.org/wiki/PHP
https://en.wikipedia.org/wiki/Web_framework
https://en.wikipedia.org/wiki/Model%E2%80%93view%E2%80%93controller
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Architectural_pattern
https://en.wikipedia.org/wiki/Symfony
https://en.wikipedia.org/wiki/Application-level_package_manager
https://en.wikipedia.org/wiki/Application-level_package_manager
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Relational_database
https://en.wikipedia.org/wiki/Application_deployment
https://en.wikipedia.org/wiki/Syntactic_sugar

 CCS336 –Lab Manual 52

Laravel 4.3 was scheduled to release in November 2014, but as development progressed, it

became clear that the significance of its changes merited a major release, and Laravel 5 was

released in February 2015.

Laravel 5 introduced a revamped directory structure, removal of the form and HTML helpers,

the introduction of the Contract interfaces, a spate of new views, Socialite for social media

authentication, Elixir for asset compilation, Scheduler to simplify cron, dotenv for simplified

environment management, Form Requests, and a brand new CLI.

Features

The following are some key features of the Laravel Framework:

• Bundles provide a modular. packaging system since the release of Laravel 3, with

bundled features already available for easy addition to applications. Furthermore,

Laravel 4 uses Composer as a dependency manager to add framework-agnostic and

Laravel-specific PHP packages available from the Packagist repository.

• Eloquent ORM (object-relational mapping) is an advanced PHP implementation of

the active record pattern, providing at the same time internal methods for enforcing

constraints on the relationships between database objects. Following the active record

pattern, Eloquent ORM presents database tables as classes, with their object

instances tied to single table rows.

• Query builder, available since Laravel 3, provides a more direct database access

alternative to the Eloquent ORM. Instead of requiring SQL queries to be written

directly, Laravel's query builder provides a set of classes and methods capable of

building queries programmatically. It also allows selectable caching of the results of

executed queries.

• Application logic is an integral part of developed applications, implemented either by

using controllers or as part of the route declarations. The syntax used to define

application logic is similar to the one used by Sinatra framework.

• Blade templating engine combines one or more templates with a data model to produce

resulting views, doing that by transpiling the templates into cached PHP code for

improved performance. Blade also provides a set of its own control structures such

as conditional statements and loops, which are internally mapped to their PHP

counterparts. Furthermore, Laravel services may be called from Blade templates, and

the templating engine itself can be extended with custom directives.

2) Stage a1 (apply)

Lab Activities:

Activity 1:

Install the Laravel Framework on your system. It will include following steps,

 Installing Composer

https://en.wikipedia.org/wiki/Application-level_package_manager
https://en.wikipedia.org/wiki/Packagist
https://en.wikipedia.org/wiki/Object-relational_mapping
https://en.wikipedia.org/wiki/Active_record_pattern
https://en.wikipedia.org/wiki/Database
https://en.wikipedia.org/wiki/Database_table
https://en.wikipedia.org/wiki/Class_(computer_programming)
https://en.wikipedia.org/wiki/Object_instances
https://en.wikipedia.org/wiki/Object_instances
https://en.wikipedia.org/wiki/Table_row
https://en.wikipedia.org/wiki/SQL_query
https://en.wikipedia.org/wiki/Method_(computer_programming)
https://en.wikipedia.org/wiki/Database_caching
https://en.wikipedia.org/wiki/MVC_controller
https://en.wikipedia.org/wiki/Syntax_(programming_languages)
https://en.wikipedia.org/wiki/Sinatra_(software)
https://en.wikipedia.org/wiki/Web_template_system
https://en.wikipedia.org/wiki/Data_model
https://en.wikipedia.org/wiki/Transpile
https://en.wikipedia.org/wiki/Control_structure
https://en.wikipedia.org/wiki/Conditional_(computer_programming)
https://en.wikipedia.org/wiki/Loop_(computing)

 CCS336 –Lab Manual 53

 Verify Compose Installation.

 Install Laravel.

 Verify Laravel Installation.

Solution:

Composer

Whatever machine you are developing on will need to have Composer installed globally. If

you are not familiar with Composer, it is the foundation of most modern PHP development.

Composer is a dependency manager for PHP, much like NPM for Node or Ruby Gems for

Ruby. You will need Composer to install Laravel, update Laravel, and bring in external

dependencies. Download the latest version of Compose installable archive file from

https://getcomposer.org/download/

Windows Installer

Download and run Composer-Setup.exe - it will install the latest composer version

whenever it is executed.

The installer - which requires that you have PHP already installed - will download Composer

for you and set up your PATH environment variable so you can simply call composer from any

directory.

Verify Compose Installation.

To verify installation, open your command prompt, and type composer -V. The system will

return the installed version of the composer on your system.

The Laravel Installer

https://getcomposer.org/download/
https://getcomposer.org/Composer-Setup.exe
https://laravel.com/docs/8.x#the-laravel-installer

 CCS336 –Lab Manual 54

To install the Laravel as a global Composer dependency, type the following command in the

command prompt:

Composer global require Laravel/installer

It will install Laravel Framework in your system. The screenshot below also describes the

procedure.

Verify Laravel Installation.

To verify installation of the Laravel framework on your system, type following command in

the command prompt.

laravel -V

It will return the installed version of the Laravel on your system.

 CCS336 –Lab Manual 55

Activity 2:

Creating your first project with the Laravel Framework. It will include,

 Creating a new Laravel Project

 Preview the Project in the Browser.

Solution:

Creating a new Laravel Project

Once you have the Laravel installer tool installed, spinning up a new Laravel project is simple.

Just run the command laravel new <ProjectName> from your command line.

This will create a new subdirectory of your current directory named <ProjectName> and

install a bare Laravel project in it.

The following screenshot creates a new project with the name studentsrecords.

The directory structure of the ‘studentsrecords’ project can be seen in the screenshot

provided below:

 CCS336 –Lab Manual 56

Preview the Project.

To view the website in the browser, we can use artisan. Artisan is the command line

interface included with Laravel. Artisan exists at the root of your application as the artisan

and provides a number of helpful commands that can assist you while you build your

application. To view a list of all available artisan commands, you may use the

list command:

php artisan list

To preview the project, we can use the following command in the command prompt.

php artisan serve

The screenshot below shows after we run the command. It starts Laravel development server

at http://127.0.0.1:8000

 CCS336 –Lab Manual 57

Opening the URL http://127.0.0.1:8000 in the browser will generate the following

default landing page of the Laravel Project.

Activity 3:

Creating routes and views in your project with the Laravel Framework. It will include,

 Defining Routes in project ‘studentrecords’

 Defining Views in project ‘studentrecords’

 Creating Controllers for project ‘studentrecords’

http://127.0.0.1:8000/

 CCS336 –Lab Manual 58

Solution:

Routes:

The essential function of any web application framework is taking requests from a user and

delivering responses, usually via HTTP(S). This means defining an application’s routes is the

first and most important concept to approach when learning a web framework; without routes,

you have no ability to interact with the end user.

In Laravel application, web routes are defined in routes/web.php. The simplest way to

define a route is to match a path (for example, /) with a closure, as described in following

example,

We have now defined that, if anyone visits / (the root of your domain), Laravel’s router should

run the Closure defined there and return the result. Note that we return our content and don’t

echo or print it.

Many simple websites could be defined within the web routes file. With a few simple GET

routes combined with some templates, we can serve a classic website easily.

Defining Routes in project ‘studentrecords’

For defining a new route /students in addition to the existing route (/), open the file
routes/web.php and add following statement at the end of the file:

 CCS336 –Lab Manual 59

Route::get('/students', function () {

 return view('students');

});

The screenshot after adding the route is provided below:

Views:

Views (or Templates) are files that describe how some particular output should look like. You

might have views for JSON or XML or emails, but the most common views in a web

framework output HTML.

In Laravel, there are two formats of view you can use out of the box: Blade or PHP. The

difference is in the filename: about.php will be rendered with the PHP engine, and

about.blade.php will be rendered with the Blade engine.

This code above looks for a view in resources/views/home.blade.php or

resources/views/home.php and loads its contents and parses any inline PHP or control

structures until you have just the view’s output. Once you return it, it is passed on to the rest

of the application and eventually returned to the user.

 CCS336 –Lab Manual 60

Defining Views in project ‘studentrecords’

For defining a view students, add the file
resources/views/students.blade.php and add following statements inside the

<body> tag:

 <div class="flex justify-center min-h-screen sm:items-center sm:pt-0">

 <table align="center">

 <tr><th>Students List</th></tr>

 <tr>

 <td>This Laravel Application will display Students informat

ion here.</td>

 </tr>

 </table>

 </div>

Visit URL http://127.0.0.1:8000/students ,it will open the following Web

Page.

Controllers:

In the MVC framework, the letter ‘C’ stands for Controller. It acts as a directing traffic between

Views and Models.

Instead of defining all of your request handling logic as closures in your route files, you may

wish to organize this behavior using "controller" classes. Controllers can group related request

handling logic into a single class. For example, a UserController class might handle all

incoming requests related to users, including showing, creating, updating, and deleting users.

By default, controllers are stored in the app/Http/Controllers directory.

Creating a Controller

Open the command prompt or terminal based on the operating system you are using and type

the following command to create controller using the Artisan CLI (Command Line Interface).

php artisan make:controller <ControllerName>

http://127.0.0.1:8000/students

 CCS336 –Lab Manual 61

Replace the <controller-name> with the name of your controller. The created

constructor can be seen at app/Http/Controllers.

A basic controller code-snippet will look something like this, and you have to create in the

directory like app/Http/Controller/AdminController.php:

<?php

namespace App\Http\Controllers;

use Illuminate\Http\Request;

class AdminController extends Controller

 {

 //

 }

The controller that you have created can be invoked from within the routes.php file using this

syntax below-

Route::get('base URI','controller@method');

Creating Controller in project ‘studentrecords’

For defining the controller ‘StudentsController’ in the project

‘studentrecords’, open the command prompt and type the following command:

php artisan make:controller StudentController

It will create a controller file with the name StudentController

at app/Http/Controller/StudentController.php.

 CCS336 –Lab Manual 62

Add following PHP function in the class StudenController.php

 public function index () {

 return view('students');

 }

To invoke controller from the routes file, add the following statement in routes/web.php

file.

Route::get('/students', 'App\Http\Controllers\StudentController@index');

Open the URL http://127.0.0.1:8000/students, it will display the following

Web Page.

http://127.0.0.1:8000/students

 CCS336 –Lab Manual 63

3) Stage v (verify)

Home Activities:

Activity 1:

Modify the activities completed during the lab to create a static HTML view which returns the

following Web Page.

4) Stage a2 (assess)

Assignment:

Define routes and views for the following Web pages of a company using Laravel Framework.

1. Home

2. Profile

3. Clients

4. Products

5. Contact Us

 CCS336 –Lab Manual 64

Statement Purpose:

To familiarize the students with the use of Blade Templating in the Laravel Framework.

Activity Outcomes:

After this lab, the students should be able to use Blade template in Laravel for creating different

views in the Web Application.

2) Stage J (Journey)

Introduction

Laravel 5.1 introduces the concept of using Blade, a templating engine to design a unique

layout. The layout thus designed can be used by other views and includes a consistent design

and structure.

Blade is the simple, yet powerful templating engine that is included with Laravel. Unlike some

PHP templating engines, Blade does not restrict you from using plain PHP code in your

templates. In fact, all Blade templates are compiled into plain PHP code and cached until they

are modified, meaning Blade adds essentially zero overhead to your application. Blade

template files use the .blade.php file extension and are typically stored in the

resources/views directory.

The complete directory structure of Laravel Blade templates is shown in the screenshot given

here.

LAB # 12

 CCS336 –Lab Manual 65

You can observe that all views are stored in the resources/views directory and the default

view for Laravel framework is welcome.blade.php.

Passing Data to Views

Blade views may be returned from routes or controller using the global view helper. Data may

be passed to the Blade view using the view helper's second argument:

Route::get('/', function () {

 return view('greeting', ['name' => 'Finn']);

});

3) Stage a1 (apply)

Lab Activities:

Activity 1:

In first activity of this lab, we will learn how to display data in blade template of Laravel Framework.

Echoing Data Passed to Views:

You may display data that is passed to your Blade views by wrapping the variable in curly

braces. For example, given the following students route in the project

studentrecords:

Route::get('/students', function () {

 return view('students', ['name' => 'Muhammad Ali']);

});

You may display the contents of the name variable in

resources/views/students.blade.php like so:

<tr><td>{{$name}}</td></tr>

The screenshots of the above steps are given below:

 CCS336 –Lab Manual 66

 CCS336 –Lab Manual 67

You are not limited to displaying the contents of the variables passed to the view. You may

also echo the results of any PHP function. In fact, you can put any PHP code you wish inside

of a Blade echo statement:

Activity 2:

In this activity, we will understand the implementation of blade directives in views.

Using Blade Directives in Views:

In addition to displaying data, Blade also provides convenient shortcuts for common PHP

control structures, such as conditional statements and loops. These shortcuts provide a very

clear, concise way of working with PHP control structures while also remaining familiar to

their PHP counterparts.

If Statements

You may construct if statements using the @if, @elseif, @else, and @endif directives. These

directives function identically to their PHP counterparts:

@if (count($records) === 1)

 I have one record!

@elseif (count($records) > 1)

 I have multiple records!

@else

 I don't have any records!

Switch Statements

Switch statements can be constructed using the @switch, @case, @break, @default and

@endswitch directives:

@switch($i)

 @case(1)

 First case...

 The current UNIX timestamp is {{ time() }}.

https://laravel.com/docs/8.x/blade#if-statements
https://laravel.com/docs/8.x/blade#switch-statements

 CCS336 –Lab Manual 68

 @break

 @case(2)

 Second case...

 @break

 @default

 Default case...

@endswitch

Loops

In addition to conditional statements, Blade provides simple directives for working with PHP's

loop structures. Again, each of these directives functions identically to their PHP counterparts:

@for ($i = 0; $i < 10; $i++)

 The current value is {{ $i }}

@endfor

@foreach ($users as $user)

 <p>This is user {{ $user->id }}</p>

@endforeach

@forelse ($users as $user)

 {{ $user->name }}

@empty

 <p>No users</p>

@endforelse

@while (true)

 <p>I'm looping forever.</p>

https://laravel.com/docs/8.x/blade#loops

 CCS336 –Lab Manual 69

@endwhile

Comments

Blade also allows you to define comments in your views.

{{-- This comment will not be present in the rendered HTML --}}

For more directives visit the following URL:

https://laravel.com/docs/8.x/blade

Using Blade Directives in project ‘studentrecords’:

• In the project ‘studentprojects’, we will use loop blade directive to display

information about the students. For example, if we pass $students array described

below having different attributes of the individual students.

• Place the following code snippet in the routes/web.php file which is then handled

by the view ‘students’ to display data on the Web Page for the user.

Route::get('/students', function () {

 $students=[

 ['name'=>'Muhammad Ali', 'Email'=>'ali@gmail.com', 'CNIC' => 1234],

 ['name'=>'Muhammad Usman', 'Email'=>'usman@gmail.com', 'CNIC' => 1234],

 ['name'=>'Muhammad Arslan', 'Email'=>'arslan@gmail.com', 'CNIC' => 1234]

];

 return view('students', ['students' => $students]);

});

• The data passed from the route file is then received in the view. It is traversed using

@for loop directive. The code for this action is given below:

• Place the following code in the view ‘views/students.blade.php’. It receives

the data passed by the route file and displays it on the page inside the div tag. The

screenshot for the Web page is also give below:

 <div class="flex justify-center min-h-screen sm:items-center sm:pt-0">

 <table class="title" border="1" align="center">

 <tr><th bgcolor="#666699" colspan="4">Students List</th></tr>

 <tr>

 <th bgcolor="#666699">S.No</th>

 <th bgcolor="#666699">Name</th>

 <th bgcolor="#666699">Email</th>

 <th bgcolor="#666699">CNIC</th>

https://laravel.com/docs/8.x/blade#comments
https://laravel.com/docs/8.x/blade

 CCS336 –Lab Manual 70

 </tr>

 @for ($i = 0; $i < count($students); $i++)

 <tr>

 <td bgcolor="#6699FF" align="center">{{$i}}</td>

 <td bgcolor="#6699FF" width="150" align="center">{{$st

udents[$i]['name']}}</td>

 <td bgcolor="#6699FF" width="150" align="center">{{$st

udents[$i]['Email']}}</td>

 <td bgcolor="#6699FF" width="150" align="center">{{$st

udents[$i]['CNIC']}}</td>

 </tr>

 @endfor

 </table>

Activity 3:

In this activity, we will implement the concept of template inheritance in Laravel Framework.

Template Inheritance

Blade provides a structure for inheritance that allows views to extend, modify, and include

other views.

To get started, let's take a look at a simple example. First, we will examine a page layout. Since

most web applications maintain the same general layout across various pages, it's convenient

to define this layout as a single Blade view:

 CCS336 –Lab Manual 71

!-- resources/views/layouts/app.blade.php -->

<html>

 <head>

 <title>App Name - @yield('title')</title>

 </head>

 <body>

 <div class="container">

 @yield('content')

 </div>

 </body>

</html>

As you can see, this file contains typical HTML mark-up. However, take note of

the @yield directives. The @yield directive is used to display the contents of a given section.

Now that we have defined a layout for our application, let's define a child page that inherits the

layout.

Extending A Layout

When defining a child view, use the @extends Blade directive to specify which layout the child

view should "inherit". Views which extend a Blade layout may inject content into the layout's

sections using @section directives. Remember, as seen in the example above, the contents of

these sections will be displayed in the layout using @yield:

<!-- resources/views/child.blade.php -->

@extends('layouts.app')

@section('title', 'Page Title')

@section('content')

 <p>This is my body content.</p>

@endsection

https://laravel.com/docs/8.x/blade#extending-a-layout

 CCS336 –Lab Manual 72

The @yield directive also accepts a default value as its second parameter. This value will be

rendered if the section being yielded is undefined:

@yield('content', 'Default content')

Using Template Inheritance in project ‘studentrecords’:

In project ‘studentrecords’, currently we have got following two views corresponding to

two different routes:

• welcome.blade.php

• students.blade.php

If we look at the code of these template files, they both have the same header and footer parts.

It would be better if we can create a generic parent layout which consists of header and footer

parts. This generic layout can then be used in both the child layouts using the concept of

template inheritance. It will avoid the repetition of code and will help in easily maintaining the

code for layouts. The following steps are followed for template inheritance in project

‘studentsrecords’:

1. Create a new parent template named, layout.blade.php and place header and

footer parts of the layout in that file.

2. In the child templates ‘welcome.blade.php’ and ‘students.blade.php’, use

the @extends blade directive to specify which layout the child view should "inherit".

Child views which extend a blade layout may inject content into the layout's sections

using @section directives.

 CCS336 –Lab Manual 73

3. Add a @yield directive in the parent template layout.blade.php to display the

contents of a given section.

4. <body class="antialiased">

5. @yield('content')

6. </body>

7. Preview of the Web page in the Web browser should look like this:

4) Stage v (verify)

 CCS336 –Lab Manual 74

Home Activities:

Activity 1:

Extend the work completed in the Lab to add both internal and external CSS styles in the

ongoing project ‘studentsproject’.

5) Stage a2 (assess)

Assignment:

Create layouts for company Web application with following pages using Blade template

language of the Laravel Framework.

1. Home

2. Profile

3. Clients

4. Products

5. Contact Us

 CCS336 –Lab Manual 75

Statement Purpose:

To familiarize students with the following concepts using Laravel Framework:

• Database Connectivity.

• Data Insertion.

• File Uploading.

• Data Retrieval.

Activity Outcomes:

After this lab, the students should be able to store and retrieve information from MySQL

database using Laravel Framework.

3) Stage J (Journey)

Introduction

Almost every modern web application interacts with a database. Laravel makes interacting with

databases extremely simple across a variety of supported databases using raw SQL, a fluent

query builder, and the Eloquent ORM. Currently, Laravel provides first-party support for four

databases:

• MySQL 5.6+ (Version Policy)

• PostgreSQL 9.4+ (Version Policy)

• SQLite 3.8.8+

• SQL Server 2017+ (Version Policy)

Database Connection

In a fresh Laravel installation, the root directory of your application will contain a

.env.example file that defines many common environment variables. During the Laravel

installation process, this file will automatically be copied to .env.

Laravel's default .env file contains some common configuration values that may differ based

on whether your application is running locally or on a production web server. These values are

then retrieved from various Laravel configuration files within the config directory using

Laravel's env function.

The .env file:

Mention the name of the already created MySQL database as the value of the DB_DATABASE

variable. In the screenshot below, we have specified ‘testdb’ as the value of the environment

variable.

LAB # 13

https://en.wikipedia.org/wiki/MySQL#Release_history
https://www.postgresql.org/support/versioning/
https://support.microsoft.com/en-us/lifecycle/search

 CCS336 –Lab Manual 76

Once you have configured your database connection, you may run queries using the DB facade.

The DB facade provides methods for each type of query: select, update, insert, delete,

and statement.

Running a Select Query

To run a basic SELECT query, you may use the select method on the DB facade:

<?php

namespace App\Http\Controllers;

use App\Http\Controllers\Controller;

use Illuminate\Support\Facades\DB;

class UserController extends Controller

{

 /**

 * Show a list of all of the application's users.

 *

 * @return \Illuminate\Http\Response

 */

 public function index()

https://laravel.com/docs/8.x/database#running-a-select-query

 CCS336 –Lab Manual 77

 {

 $users = DB::select('select * from users where active = ?', [1]);

 return view('user.index', ['users' => $users]);

 }

}

The first argument passed to the select method is the SQL query, while the second argument

is any parameter bindings that need to be bound to the query. Typically, these are the values of

the where clause constraints. Parameter binding provides protection against SQL injection.

The select method will always return an array of results. Each result within the array will

be a PHP stdClass object representing a record from the database:

use Illuminate\Support\Facades\DB;

$users = DB::select('select * from users');

foreach ($users as $user) {

 echo $user->name;

}

Using Named Bindings

Instead of using ? to represent your parameter bindings, you may execute a query using named

bindings:

 $results = DB::select('select * from users where id = :id', ['id' => 1]);

Running an Insert Statement

To execute an insert statement, you may use the insert method on the DB facade.

Like select, this method accepts the SQL query as its first argument and bindings as its second

argument:

use Illuminate\Support\Facades\DB;

DB::insert('insert into users (id, name) values (?, ?)', [1, 'Marc']);

https://laravel.com/docs/8.x/database#using-named-bindings
https://laravel.com/docs/8.x/database#running-an-insert-statement

 CCS336 –Lab Manual 78

File uploading using Laravel:

Sometimes, we have to get input from a user in form of a file. Usually, the attached file is

handled in two ways:

1. uploading the file to the server while storing its reference in the database and

2. Saving the file in the database.

In this lab, we are going to follow first approach for uploading the file. To upload the file to

the server we use the following function:

bool move (string $destination, string $filename)

$pic = $request->file('pic');

$picName = $pic->getClientOriginalName();

$pic->move('uploads',$picName);

4) Stage a1 (apply)

Lab Activities:

Activity 1:

Suppose the students uses the following form to get registered with your website. Create a view

having a Web Form which collects information from the user and adds that information in the

MySQL database ‘testdb’ using the Laravel Framework.

In the database “testdb”, create a table “users” with columns names user_Id,

user_Name, user_Email, user_CNIC, user_Comments and user_Picture.

Write a PHP code that:

1. Uploads the picture to the server (in uploads folder).

2. Inserts the user record in the database.

Solution:

https://laravel.com/docs/8.x/filesystem#downloading-files

 CCS336 –Lab Manual 79

Step 1:

Go to phpMyAdmin and create the database testdb:

Step 2:

Create the table users:

Step 3:

Define the columns:

Step 1:

Create a new template with the title ‘create.blade.php’. Write the following code in the

‘view/students/create.blade.php’ file.

@extends('layouts.layout')

@section('content')

 <form action="/students/create" method="POST" enctype="multipart/form-data">

 @csrf

 <table width="450px" border="0" bgcolor="#6699FF" align="center">

 <tr>

 <th valign="top" colspan="2" bgcolor="#666699">

 CCS336 –Lab Manual 80

 User Registration Form

 </th>

 </tr>

 <tr>

 <td valign="top">

 <label for="first_name">First Name *</label>

 </td>

 <td valign="top">

 <input type="text" name="first_name" maxlength="50" size="30">

 </td>

 </tr>

 <tr>

 <td valign="top"">

 <label for="last_name">Last Name *</label>

 </td>

 <td valign="top">

 <input type="text" name="last_name" maxlength="50" size="30">

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="email">Email Address *</label>

 </td>

 <td valign="top">

 <input type="text" name="email" maxlength="80" size="30">

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="first_name">CNIC No. *</label>

 </td>

 <td valign="top">

 <input type="text" name="cnic" maxlength="50" size="30">

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="telephone">Telephone Number</label>

 </td>

 <td valign="top">

 <input type="text" name="telephone" maxlength="30" size="30">

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="telephone">Your Picture</label>

 </td>

 <td valign="top">

 <input type="file" name="pic" maxlength="30" size="30">

 </td>

 CCS336 –Lab Manual 81

 </tr>

 <tr>

 <td valign="top">

 <label for="comments">Comments on Your Self *</label>

 </td>

 <td valign="top">

 <textarea name="comments" maxlength="1000" cols="25" rows="6">

</textarea>

 </td>

 </tr>

 <tr>

 <td colspan="2" style="text-align:center">

 <input type="submit" value="Submit">

 </td>

 </tr>

 </table>

 </form>

@endsection

Step 2:

Define the following route in the file ‘routes/web.php’

Route::post('/students/create', 'App\Http\Controllers\StudentController@store'

);

Step 3:

Write the following PHP function in the file

‘app/Http/Controllers/StudentController.php’

 public function store(Request $request) {

 $fname = $request->input('first_name');

 $lname = $request->input('last_name');

 $name = $fname." ".$lname;

 $email = $request->input('email');

 $cnic = $request->input('cnic');

 $tel = $request->input('telephone');

 $comments = $request->input('comments');

 $pic = $request->file('pic');

 $picName = $pic->getClientOriginalName();

 $picType = $pic->getClientOriginalExtension();

 $picSize = $pic->getSize();

 $pic->move('uploads',$picName);

 $destination = 'uploads/'.$picName;

 CCS336 –Lab Manual 82

 DB::unprepared("insert into users (user_name, user_Email, user_CNI

C, user_Comments, user_Telephone, user_Picture) values ('$name','$email','$cni

c','$comments','$tel','$destination')");

 return redirect('/students/create');

 }

Step 4:

Visit the following URL to insert record in database.

http://127.0.0.1:8000/students/create

Activity 2:

Create a new view that retrieves information from the MySQL database and displays that

information on the Web Page.

Solution:

Step 1:

Define the following route in the file ‘routes/web.php’

Route::get('/index', 'App\Http\Controllers\StudentController@index');

Step 2:

Write the following PHP function in the file

‘app/Http/Controllers/StudentController.php’

 public function index() {

 $students = DB::select("select * from users");

 return view('students.index', ['students' => $students]);

 }

Step 3:

Create a new template with the title ‘index.blade.php’. Write the following code in the

‘view/students/index.blade.php’ file.

http://127.0.0.1:8000/students/create

 CCS336 –Lab Manual 83

@extends('layouts.layout')

@section('content')

 <table border="1" align="center">

 <tr>

 <th bgcolor="#666699">Name</td>

 <th bgcolor="#666699">Email</td>

 <th bgcolor="#666699">CNIC</td>

 <th bgcolor="#666699">Comments</td>

 <th bgcolor="#666699">Telephone</td>

 <th bgcolor="#666699">Photo</td>

 <th bgcolor="#666699">Delete</td>

 <th bgcolor="#666699">Edit</td>

 </tr>

 @foreach ($students as $student)

 <tr>

 <td bgcolor="#6699FF" width="150" align="center">{{ $student-

>user_Name }}</td>

 <td bgcolor="#6699FF" width="200" align="center">{{ $student-

>user_Email }}</td>

 <td bgcolor="#6699FF" width="200" align="center">{{ $student-

>user_CNIC }}</td>

 <td bgcolor="#6699FF" width="300" align="center">{{ $student-

>user_Comments }}</td>

 <td bgcolor="#6699FF" width="100" align="center">{{ $student-

>user_Telephone }}</td>

 <td bgcolor="#6699FF" width="100" align="center"><img src = {{ $st

udent->user_Picture }}></td>

 <td bgcolor="#6699FF" width="100" align="center">

 <a href="delete/{{ $student-

>user_id }}" onclick="return confirm('Do you really want to delete this record

?')">DELETE</td>

 <td bgcolor="#6699FF" width="100" align="center">

 <a href="update/{{ $student-

>user_id }}" onclick="return confirm('Do you really want to update this record

?')">EDIT</td>

 </tr>

 @endforeach

 </table>

@endsection

Step 4:

Opening the following URL http://127.0.0.1:8000/index will display the Web

Page carrying information about all the student records.

http://127.0.0.1:8000/index

 CCS336 –Lab Manual 84

5) Stage v (verify)

Home Activities:

Activity 1:

Create the following form with the search field. Write a PHP script that searches and displays

users with the same email address as entered by the user.

6) Stage a2 (assess)

Assignment:

Create Web Forms for the following Web Pages for collecting user information using the

Laravel Framework.

1. Profile

2. Contact Us

 CCS336 –Lab Manual 85

Statement Purpose:

To familiarize students with the update and delete CRUD Operations in MySQL using Laravel

Framework.

Activity Outcomes:

After this lab, the students should be able to delete and update records in MySQL using Laravel

Framework.

1) Stage J (Journey)

Introduction

Running an Update Statement

The update method should be used to update existing records in the database. The number of

rows affected by the statement is returned by the method:

use Illuminate\Support\Facades\DB;

$affected = DB::update('update users set votes = 100 where name = ?', ['Anita']);

Running a Delete Statement

The delete method should be used to delete records from the database. Like update, the

number of rows affected will be returned by the method:

use Illuminate\Support\Facades\DB;

$deleted = DB::delete('delete from users');

2) Stage a1 (apply)

Lab Activities:

Activity 1:

Write the code that retrieves all of the records added in the table users in the testdb

database. Add another column in each row that displays the delete option to the users (as shown

in the following Figure). When the user clicks on the delete link a confirm box should open

and after confirmation that row should have been deleted from the table.

LAB # 14

https://laravel.com/docs/8.x/database#running-an-update-statement
https://laravel.com/docs/8.x/database#running-a-delete-statement

 CCS336 –Lab Manual 86

Solution:

Step 1:

Create a new template with the title ‘index.blade.php’. Write the following code in the

‘view/students/index.blade.php’ file.

@extends('layouts.layout')

@section('content')

 <table border="1" align="center">

 <tr>

 <th bgcolor="#666699">Name</td>

 <th bgcolor="#666699">Email</td>

 <th bgcolor="#666699">CNIC</td>

 <th bgcolor="#666699">Comments</td>

 <th bgcolor="#666699">Telephone</td>

 <th bgcolor="#666699">Photo</td>

 <th bgcolor="#666699">Delete</td>

 <th bgcolor="#666699">Edit</td>

 </tr>

 @foreach ($students as $student)

 <tr>

 <td bgcolor="#6699FF" width="150" align="center">{{ $student-

>user_Name }}</td>

 <td bgcolor="#6699FF" width="200" align="center">{{ $student-

>user_Email }}</td>

 <td bgcolor="#6699FF" width="200" align="center">{{ $student-

>user_CNIC }}</td>

 <td bgcolor="#6699FF" width="300" align="center">{{ $student-

>user_Comments }}</td>

 <td bgcolor="#6699FF" width="100" align="center">{{ $student-

>user_Telephone }}</td>

 <td bgcolor="#6699FF" width="100" align="center"><img src = {{ $st

udent->user_Picture }}></td>

 <td bgcolor="#6699FF" width="100" align="center">

 <a href="delete/{{ $student-

>user_id }}" onclick="return confirm('Do you really want to delete this record

?')">DELETE</td>

 <td bgcolor="#6699FF" width="100" align="center">

 CCS336 –Lab Manual 87

 <a href="update/{{ $student-

>user_id }}" onclick="return confirm('Do you really want to update this record

?')">EDIT</td>

 </tr>

 @endforeach

 </table>

@endsection

Step 2:

Define the following route in the file ‘routes/web.php’ for the user click at delete link

within the data table.

Route::get('delete/{id}','App\Http\Controllers\StudentController@destroy');

Step 3:

Write the following PHP function in the file

‘app/Http/Controllers/StudentController.php’

public function destroy($id) {

 DB::unprepared("delete from users where user_id = '$id'");

 return redirect('/index');

 }

Step 4:

Open the following URL: http://127.0.0.1:8000/index. Click on the

corresponding DELETE link of the row to delete the record. The following confirm dialog

box will be displayed.

Step 5:

When the user clicks on the OK button, the record will be deleted from the database and the

updated Web Page will be displayed to the user.

http://127.0.0.1:8000/index

 CCS336 –Lab Manual 88

Activity 2:

When the user clicks on the EDIT link, another form displaying the existing record should

open. When user submits this form after updating the values; the new values should replace

the existing ones in the database.

Solution:

Step 1:

When the user clicks on the Update link in the index.blade.php (See Step 1 of Activity

1), the following route should be activated.

Route::get('update/{id}', 'App\Http\Controllers\StudentController@update');

Step 2:

Write the following PHP function in the file

‘app/Http/Controllers/StudentController.php’

public function update($id) {

 $users = DB::select("select * from users where user_id = ?",[$id]);

 return view('students.update',['users' => $users]);

 }

Step 3:

Create a new template with the title ‘update.blade.php’. Write the following code in the

‘view/students/update.blade.php’ file.

@extends('layouts.layout')

@section('content')

<form action="/students/update/{{ $users[0]-

>user_id }}" method="POST" enctype="multipart/form-data">

 @csrf

 <table width="450px" border="0" bgcolor="#6699FF" align="center">

 <tr>

 <th valign="top" colspan="2" bgcolor="#666699">

 User Registration Form

 </th>

 </tr>

 <tr>

 <td valign="top">

 <label for="first_name">First Name *</label>

 </td>

 <td valign="top">

 CCS336 –Lab Manual 89

 <input type="text" name="first_name" maxlength="50" size="

30" value = {{ $users[0]->user_Name }}>

 </td>

 </tr>

 <tr>

 <td valign="top"">

 <label for="last_name">Last Name *</label>

 </td>

 <td valign="top">

 <input type="text" name="last_name" maxlength="50" size="3

0" value ={{ $users[0]->user_Name }}>

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="email">Email Address *</label>

 </td>

 <td valign="top">

 <input type="text" name="email" maxlength="80" size="30" v

alue ={{ $users[0]->user_Email }}>

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="first_name">CNIC No. *</label>

 </td>

 <td valign="top">

 <input type="text" name="cnic" maxlength="50" size="30" va

lue ={{ $users[0]->user_CNIC}}>

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="telephone">Telephone Number</label>

 </td>

 <td valign="top">

 <input type="text" name="telephone" maxlength="30" size="3

0" value ={{ $users[0]->user_Telephone}}>

 </td>

 </tr>

 <tr>

 <td valign="top">

 <label for="telephone">Your Picture</label>

 </td>

 <td valign="top">

 <input type="file" name="pic" maxlength="30" size="30">

 </td>

 </tr>

 <tr>

 <td valign="top">

 CCS336 –Lab Manual 90

 <label for="comments">Comments on Your Self *</label>

 </td>

 <td valign="top">

 <textarea name="comments" maxlength="1000" cols="25" rows=

"6">{{ $users[0]->user_Comments }}</textarea>

 </td>

 </tr>

 <tr>

 <td colspan="2" style="text-align:center">

 <input type="submit" value="Update">

 </td>

 </tr>

 </table>

 </form>

@endsection

Step 4:

Define the following routes in the file ‘routes/web.php’

Route::post('/students/update/{id}','App\Http\Controllers\StudentController@di

splay');

Write the following PHP function in the file

‘app/Http/Controllers/StudentController.php’

public function display(Request $request, $id){

 $fname = $request->input('first_name');

 $lname = $request->input('last_name');

 $name = $fname." ".$lname;

 $email = $request->input('email');

 $cnic = $request->input('cnic');

 $tel = $request->input('telephone');

 $comments = $request->input('comments');

 $pic = $request->file('pic');

 $picName = $pic->getClientOriginalName();

 $picType = $pic->getClientOriginalExtension();

 $picSize = $pic->getSize();

 $pic->move('uploads',$picName);

 $destination = 'uploads/'.$picName;

 DB::update("update table_users set user_Name=?, user_Email=?, user

_CNIC=?, user_Comments=?, user_Telephone=?, user_Picture=? where user_id = ?",

 [$name, $email, $cnic, $comments, $tel, $destination, $id]);

 CCS336 –Lab Manual 91

 return redirect('index');

 }

Step 5:

Open the following URL: http://127.0.0.1:8000/index.

Step 6:

1. The code for the view update.blade.php is provided in the Step 3, which will

receive the data and display it in the Web Form using Blade directives. Note that all

the input fields in the form are filled by retrieving data from the database.

Step 7:

1. After updating data, the page will be redirected to

http://127.0.0.1:8000/index. The following screenshot shows the

updated Web Page with the modified data.

http://127.0.0.1:8000/index
http://127.0.0.1:8000/index

 CCS336 –Lab Manual 92

3) Stage a2 (assess)

Assignment:

Add features for updating and deleting the records of company employees using Laravel

Framework.

1. Home

2. Profile

3. Clients

4. Products

5. Contact Us

 CCS336 –Lab Manual 93

Statement Purpose:

To familiarize students with the Database Migration Operations in MySQL using Laravel

Framework.

Activity Outcomes:

After this lab, the students should be able to create Tables in MySQL Database using Database

Migrations in Laravel Framework.

4) Stage J (Journey)

Introduction

Database migrations, also known as schema migrations, database schema migrations, or simply

migrations, are controlled sets of changes developed to modify the structure of the objects

within a relational database.

Migrations help transition database schemas from their current state to a new desired state,

whether that involves adding tables and columns, removing elements, splitting fields, or

changing types and constraints.

The Laravel Schema facade provides database agnostic support for creating and manipulating

tables across all of Laravel's supported database systems. Typically, migrations will use this

facade to create and modify database tables and columns.

Generating Migrations

You may use the make:migration Artisan command to generate a database migration. The

new migration will be placed in your database/migrations directory.

Laravel will use the name of the migration to attempt to guess the name of the table and whether

or not the migration will be creating a new table. If Laravel is able to determine the table name

from the migration name, Laravel will pre-fill the generated migration file with the specified

table. Otherwise, you may simply specify the table in the migration file manually.

Migration Structure

A migration class contains two methods: up and down. The up method is used to add new

tables, columns, or indexes to your database, while the down method should reverse the

operations performed by the up method.

Within both of these methods, you may use the Laravel schema builder to expressively create

and modify tables. To learn about all of the methods available on the Schema builder, check

out its documentation. For example, the following migration creates a flights table:

LAB # 15

https://laravel.com/docs/8.x/artisan

 CCS336 –Lab Manual 94

<?php

use Illuminate\Database\Migrations\Migration;

use Illuminate\Database\Schema\Blueprint;

use Illuminate\Support\Facades\Schema;

class CreateFlightsTable extends Migration

{

 /**

 * Run the migrations.

 *

 * @return void

 */

 public function up()

 {

 Schema::create('flights', function (Blueprint $table) {

 $table->id();

 $table->string('name');

 $table->string('airline');

 $table->timestamps();

 });

 }

 /**

 * Reverse the migrations.

 *

 * @return void

 */

 public function down()

 {

 CCS336 –Lab Manual 95

 Schema::drop('flights');

 }

}

Running Migrations

To run all of your outstanding migrations, execute the migrate Artisan command:

php artisan migrate

5) Stage a1 (apply)

Lab Activities:

Activity 1:

In this activity, students have to understand different commands under the category of

migrations.

Solution:

To get the list of commands under the category of migrations, type the following command in

the command prompt:

php artisan list

It will return a list of all available artisan commands. Scroll to the category of migrate. The

description of these commands is provided below:

1. Rolling Back Migrations

 CCS336 –Lab Manual 96

To roll back the latest migration operation, you may use the rollback Artisan command. This

command rolls back the last "batch" of migrations, which may include multiple migration

files:

php artisan migrate:rollback

The migrate:reset command will roll back all of your application's migrations:

php artisan migrate:reset

2. Drop All Tables & Migrate

The migrate:fresh command will drop all tables from the database and then execute

the migrate command. It also deletes manually created tables. Be careful while executing this

command because it will not regenerate manually generated table due to the absence of

migration file for that table.

php artisan migrate:fresh

3. Roll Back & Migrate Using A Single Command

The migrate:refresh command will roll back all of your migrations and then execute

the migrate command. This command effectively re-creates your entire database. It will not

remove manually added tables in the database.

php artisan migrate:refresh

Activity 2:

 CCS336 –Lab Manual 97

In the project ‘onlinefishmarket’, create user_infos and details tables in the

database fmarket-migration using migrations commands.

Solution:

Step 1:

To create the table user_infos, type the following command in the command prompt:

php artisan make:migration create_user_infos_table

Similarly type the following command for creating details table.

php artisan make:migration create_details_table

Step 2:

 CCS336 –Lab Manual 98

The created migration files in the database/migrations/ are the following:

• 2021_06_22_171757_create_user_infos_table.php

• 2021_06_22_172410_create_details_table.php

The screenshot below shows that the migration file created by the Laravel contains a boilerplate

code with two functions up and down. The up function is responsible for creating the table

and down function is used for deleting the table.

Step 3:

Add two more columns (username and password) in the user_infos table as we

needed them for saving usernames and passwords of the user accounts created on our Web

application.

 CCS336 –Lab Manual 99

Similarly, add three more columns (name, weight and public) in the details table as

we needed them for saving records of the fish data created in our Web application.

Step 4:

Run the following command for creating the tables in the in the database fmarket-
migration.

php artisan migrate

Step 5:

Switch to the phpMyAdmin interface using the following URL, and view the changes made

by the above command.

http://localhost/phpmyadmin/

 CCS336 –Lab Manual 100

Activity 3:

In the ‘onlinefishmarket’ project, create Models for interacting with the database using

Eloquent ORM commands.

Solution:

Eloquent

Laravel includes Eloquent, an object-relational mapper (ORM) that makes it enjoyable to

interact with your database. When using Eloquent, each database table has a corresponding

"Model" that is used to interact with that table. In addition to retrieving records from the

 CCS336 –Lab Manual 101

database table, Eloquent models allow you to insert, update, and delete records from the table

as well.

Generating Model Classes

To get started, let's create an Eloquent model. Models typically live in the app/Models

directory and extend the Illuminate\Database\Eloquent\Model class. You may use the

make:model Artisan command to generate a new model:

php artisan make:model Flight

Table Names

After glancing at the example above, you may have noticed that we did not tell Eloquent which

database table corresponds to our Flight model. By convention, the "snake case", plural name

of the class will be used as the table name unless another name is explicitly specified. So, in

this case, Eloquent will assume the Flight model stores records in the flights table, while an

AirTrafficController model would store records in an air_traffic_controllers table.

If your model's corresponding database table does not fit this convention, you may manually

specify the model's table name by defining a table property on the model:

<?php

namespace App\Models;

use Illuminate\Database\Eloquent\Model;

class Flight extends Model

{

 /**

 * The table associated with the model.

 *

 * @var string

 */

https://laravel.com/docs/8.x/artisan

 CCS336 –Lab Manual 102

 protected $table = 'my_flights';

}

Step 1:

Run the following commands to create models for interacting with the database tables

user_infos and details.

php artisan make:model User_Info

php artisan make:model Detail

Step 2:

Replace the queries in the UserController class with the Eloquent Model class methods.

function store() {

 $user = new User_Info;

 $user->username = Request::input('username');

 $user->password = Request::input('password');

 $user->save();

 //$uname = Request::input('username');

 //$pass = Request::input('password');

 //DB::unprepared("insert into users (username,password) values ('$unam

e','$pass')");

 //DB::insert('insert into users (username, password) values (?, ?)', [

$uname, $pass]);

 CCS336 –Lab Manual 103

 return redirect('index');

 }

function match() {

 $uname = Request::input('username');

 $pass = Request::input('password');

 $loginData = User_Info::where('username', $uname)->get();

 //$loginData = DB::select('select password from users where username =

 ?', [$uname]);

 if (count($loginData) > 0){

 foreach ($loginData as $tablepass) {

 if (($tablepass->password) == $pass){

 return redirect('home');

 }

 else{

 $error='Password does not match';

 return view('login')->with('error',$error);

 }

 }

 }

 //return redirect('login');

 }

 function home() {

 //$fishData = DB::select('select * from details');

 $fishData = Detail::all();

 return view('home', ["fishData"=>$fishData]);

 }

 function storeFish() {

 //$fishname = Request::input('fishname');

 //$fishweight = Request::input('fishweight');

 CCS336 –Lab Manual 104

 $public = Request::input('public');

 if ($public == "yes")

 $decision="yes";

 else

 $decision="no";

 $detail = new Detail;

 $detail->name = Request::input('fishname');

 $detail->weight = Request::input('fishweight');

 $detail->public = $decision;

 $detail->save();

 //DB::insert('insert into details (name, weight, public,updatedtime) v

alues (?, ?, ?,?)', [$fishname , $fishweight, $decision,null]);

 return redirect('home');

 }

 function viewFish() {

 $id= request('id');

 //$fishData = DB::select('select * from details where id = ?',[$id]);

 $fishData = Detail::where('id', $id)->get();

 return view('edit', ["fishData"=>$fishData,'id'=>$id]);

 }

function updateFish($id) {

 $fishweight = Request::input('fishweight');

 $public = Request::input('public');

 if ($public == "yes")

 $decision="yes";

 else

 $decision="no";

 date_default_timezone_set("Asia/Karachi");

 $dt = date("Y-m-d H:i:s");

 $detail = Detail::find($id);

 $detail->weight = $fishweight;

 CCS336 –Lab Manual 105

 $detail->public = $decision;

 $detail->save();

 //DB::update('update details set weight=?, public=?, updatedtime=? whe

re id= ?', [$fishweight, $decision, $dt ,$id]);

 return redirect('home');

 }

 function deleteFish() {

 $id= request('id');

 Detail::destroy($id);

 //DB::delete('delete from details where id= ?', [$id]);

 return redirect('home');

 }

6) Stage a2 (assess)

Assignment:

Create tables using migrations for the project company employees using Laravel Framework.

6. Home

7. Profile

8. Clients

9. Products

10. Contact Us

